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Abstract: Collaborative filtering has proved to be one of the most popular and successful rating
prediction techniques over the last few years. In collaborative filtering, each rating prediction,
concerning a product or a service, is based on the rating values that users that are considered “close”
to the user for whom the prediction is being generated have given to the same product or service.
In general, “close” users for some user u correspond to users that have rated items similarly to u
and these users are termed as “near neighbors”. As a result, the more reliable these near neighbors
are, the more successful predictions the collaborative filtering system will compute and ultimately,
the more successful recommendations the recommender system will generate. However, when
the dataset’s density is relatively low, it is hard to find reliable near neighbors and hence many
predictions fail, resulting in low recommender system reliability. In this work, we present a method
that enhances rating prediction quality in low-density collaborative filtering datasets, by considering
predictions whose features are associated with high prediction accuracy as additional ratings. The
presented method’s efficacy and applicability are substantiated through an extensive multi-parameter
evaluation process, using widely acceptable low-density collaborative filtering datasets.

Keywords: personalization; recommender systems; collaborative filtering; rating prediction quality;
low density datasets; evaluation; reliability

1. Introduction

The ultimate goal of a recommender system is to produce personalized recommenda-
tions of products and services for its clients/users. Typically, a recommender system aims
at generating rating predictions for the goods and services the users have not rated yet and
then recommends the ones achieving the higher rating prediction score for each user [1–3].

One of the most successful and popular rating prediction techniques, over the last
years, is collaborative filtering (CF). CF algorithms initially compute the vicinity between
each pair of users (user1, user2) in the dataset, based on a user similarity function metric
which considers the products or services that both user1 and user2 have rated: the more
resemblant ratings entered by user1 and user2 for commonly rated items are, the higher
the similarity these two users share. For each dataset user u, the users having the larger
similarity with them create u’s neighborhood and hence are termed u’s near neighbors
(NNs). Then, for each product-service x that user u has not yet evaluated, the ratings of
u’s NNs to x are used, in order to predict the rating value that u would give to x, based
on a rating prediction formula [4–6]. This setting follows the reasoning that humans trust
the people who consider close to them when seeking recommendations for services and
products in the real world, regardless of the service or product category [7,8].

Typically, the success of the CF rating prediction procedure is based on the reliability of
the users’ neighborhood. As expected, users with a small number of NNs, as well as users
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having many NNs with low similarity values, tend to obtain inferior quality predictions
more frequently [9–11]. The key factor of having users with a small number of NNs, which
leads to reduced rating prediction quality in CF, is the density of the dataset, i.e., the number
of user ratings within the dataset, when compared with the total numbers of both the users
and the products or services. Typically, the less density a CF dataset has, the lower the
overall rating prediction quality observed for this dataset is [12,13].

More specifically, the aforementioned low rating prediction quality results in
(a) demoted rating prediction accuracy (i.e., the closeness between the rating prediction
value and the user’s real rating value to the products or services) and (b) low rating predic-
tion coverage (i.e., the percentage of the products not already rated by a user u, for which a
prediction can be computed, based on the CF procedure). The first of these root causes leads
to situations where the recommender system may recommend products that the user–client
will not like, whereas the second root cause implies that the recommender system may
never recommend products that the user or client would actually like. The first consequence
is deemed more severe than the second one, in the sense that when failing to recommend
some specific products/items that the user would like, the recommender system may still
formulate a successful recommendation including some other products/items that the user
would rate highly. Nevertheless, both root causes negatively affect the reliability of the
recommender system [14,15]. Addressing both root causes would therefore enhance the
recommendation quality of a recommender system, including the aspects of reliability,
accuracy, and coverage.

Previous and state-of-the-art work explored, in a broader context, the rating prediction
accuracy of related factors in low-density CF datasets [16]. This work showed that three
factors are correlated with rating prediction accuracy reduction. These factors are (a) the
number of NNs taking part in the formulation of the rating prediction, (b) the mean rating
value the item for which the prediction is calculated has, and (c) the mean rating value the
user for whom the prediction is being calculated has.

The present work incorporates the aforementioned knowledge into a technique for
enhancing rating prediction quality in low-density CF datasets. More specifically, the
proposed technique entails a preprocessing step that computes predictions for all unrated
items, for each user. Subsequently, the rating predictions, which are deemed of high
accuracy (considering the factors identified in Margaris et al. [16]), are added to the low-
density rating dataset as additional ratings, effectively increasing the dataset density.
Once this density enrichment step has concluded, any algorithm, either memory-based
or model-based, can be applied to the updated dataset to generate rating predictions and
recommendations. Figure 1 outlines the proposed approach. The present paper focuses
on the computation of the high-accuracy prediction phase, which effectively constitutes a
preprocessing step that is applied to the user–item rating matrix.
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In Figure 1 we can observe that (i) the prediction regarding the rating of user c for
item 3 is based on four near neighbors of c, namely a, b, d, and e (n.b. for the sake of example
we consider as NNs users that have at least two common ratings with the target user),
(ii) the average of the ratings for item 3 is close to the high end of the rating scale, and
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(iii) the average of the ratings for user c is close to the low end of the rating scale; therefore,
this rating prediction is deemed of high accuracy and is inserted into the user–item rating
matrix producing the enriched user–item rating matrix. Considering the enriched user–item
rating matrix, user c now has two items rated in common with user f ; hence, user c can
contribute to the formulation of a rating prediction on item 1 for user f. Additionally, the
incorporated rating will be taken into account for the formulation of the prediction on
item 3 for user d.

In order to substantiate both the efficacy and the applicability of the presented method,
an extensive multi-parameter evaluation has been conducted, using three types of recom-
menders (memory-based, model-based, and implicit trust-based), eight widely acceptable
low-density datasets, two user similarity metrics, as well as two error/deviation metrics
for rating prediction.

The contribution of the present work to the state-of-the-art comprises (a) an algorithm
that enriches the user–item rating matrix with rating predictions that are deemed of high
confidence, allowing recommendation algorithms to operate on the enriched dataset (which
is denser) and thus produce better recommendations, (b) an extensive evaluation of the
efficiency of the proposed approach under a wide set of parameters, and using both
memory-based and model-based recommendation algorithms, which substantiates that the
proposed approach significantly enhances the rating prediction quality in low-density CF
datasets, and (c) an evaluation of using the proposed approach in combination with implicit
trust-based techniques, which also aim to improve rating prediction quality and coverage,
where the results show that additional gains may be reaped from this combination.

The rest of the paper is structured as follows: in Section 2, the related work is
overviewed, whereas in Sections 3 and 4 the presented algorithm is analyzed and evalu-
ated, respectively. Section 5 discusses the results and compares them with the results of
state-of-the-art algorithms sourced from the literature, and Section 6 concludes the paper,
and outlines future work.

2. Related Work

Rating prediction quality is one of the CF research fields that has attracted considerable
research attention during the last 20 years. Two main categories of this research field exist.
The first one comprises works that take into account supplementary information sources,
such as social user relations or characteristics of the products and services or user reviews
concerning products and services; correspondingly, the second category comprises research
works that are exclusively based on the information stored in the user–item rating matrix.

Regarding the first category, Chen et al. [17] present an algorithm that enhances rating
prediction quality in memory-based CF. This algorithm incorporates genre information
concerning the items, in order to predict whether each user would like a specific item.
Furthermore, by combining user and item categorical features, this algorithm represents
relations between users and items in the user–item–weight matrix. Gao et al. [18] present a
technique that contains a context-aware neural CF model and a fuzzy clustering algorithm.
In order to produce service and user clusters, the proposed algorithm uses contextual
information and fuzzy c-means. Lastly, it presents a new prediction model, namely context-
aware neural CF, which is able to discover latent cluster features as well as latent features
in historical QoS data. A clustering-based algorithm is also presented by Zhang et al. [19],
which aims at reducing the data sparsity importance. In this algorithm, user groups
are used in order to distinguish users with different preferences and then, based on the
preference of the active user, it obtains the NN set from the corresponding group of users.
Furthermore, this work introduces a new user similarity metric that takes into account user
preference in the global and local perspectives.

Nilashi et al. [20] introduce a new machine learning technique based on soft computing,
which considers multiple quality factors in the TripAdvisor accommodation service, and
exploits this information to retrieve eco-friendly hotels that match the search criteria. This
technique is developed using prediction machine learning algorithms, as well as reduction
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of dimensionality, and aims to enhance the rating prediction scalability of the user ratings’
values. Jiang et al. [21] introduce a modified hypertext-induced topic search algorithm-
based user interest filtering and the Latent Dirichlet Allocation-based interest detection
model, which distills high-influence users and emerging interests. This algorithm decreases
the adverse impact of user interests not related to the current context, as well as forms the
target user’s NN set and recommends the results according to NN rating data. Furthermore,
it introduces a label propagation and CF-based algorithm user interest community detection
algorithm, which assigns, to each post, an individual tag, and then updates its label until
stable user interest communities are obtained. Marin et al. [22] examine the variations in
users’ rating practices and employ the concept of “rating proximity” and a tensor-based
workflow to create a smoother representation of users’ preferences, that is more resilient to
variations of users’ rating practices and produces more accurate recommendations.

Zhang et al. [23] introduce a location-aware deep CF algorithm that integrates a
similarity adaptive corrector with a multilayer perceptron, which is able to learn the
location correlation, as well as the nonlinear and the high-dimensional interactions between
services and users. Yang et al. [24] introduce a model-based algorithm that enhances the
quality of CF recommendations by first identifying users whose rating data are sparse,
and then sourcing from social networks user-to-user trust information for these users,
in order to generate more informed recommendations. This algorithm adopts matrix
factorization methods which utilize trust relationships to map users into low-dimensional
latent feature spaces. It targets the learning of the preference patterns of users with high-
quality recommendations, as well as reflecting the mutual influence between users on
their impressions’ formulation. Nassar et al. [25] present a multi-criteria deep learning CF
technique, which enhances CF performance. Initially, this technique receives the items’ and
users’ characteristics and inserts them into a deep neural network (DNN) which computes
predictions on the ratings of the criteria. Then, a second DNN is used which takes as input
the aforementioned criteria and produces the overall ratings.

The algorithms presented in [26–28] fuse the rating prediction matrix with semantic
information to enhance rating prediction quality. More specifically, Nguyen et al. [26] com-
pute the cognitive similarity of the user about similar movies, and subsequently process the
cognitive similarity-enhanced input using a three-layered architecture comprising (a) the
item layer (which encompasses the network between items), (b) the cognition layer (which
pertains to the network between the cognitive similarity of users), and (c) the user layer
(which entails the network between users occurring in their cognitive similarity), achieving
thus improvements in rating prediction accuracy. Alaa El-deen Ahmed et al. [27] introduce
a hybrid recommendation system that combines (a) knowledge-driven recommendations
generated with the use of a customized ontology and (b) recommendations created using
classifiers and neural network-based collaborative filtering. This approach enables the flow
of semantic information toward the machine learning component and, inversely, statis-
tical information toward the ontology, resulting in improved rating prediction accuracy.
Nguyen et al. [28] employ word embedding to first understand the plot of movies, and
subsequently use this additional knowledge to compute more accurate movie-to-movie
similarity measures, which are then utilized in the rating prediction generation process.

The approaches listed above fall into three general categories, each exhibiting its own
merits: (a) the memory-based approach, which is easier to implement and better supports
recommendation explainability, being additionally independent of the content on which
the algorithm is applied; (b) the model-based approach, which offers higher accuracy,
performs better with sparse user–item rating matrixes and being more scalable, and (c) the
hybrid approach, which is more complex to create and apply, but on the other hand, offers
additional performance gains and successfully tackles the issues of information loss and
sparsity [29,30].

Although the aforementioned research works achieve considerable performance im-
provements, the supplementary information, which they all require, cannot be found in
every CF dataset. Hence, a CF algorithm that is based only on the essential CF information,
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i.e., the {user, item, rating, timestamp} tuple may be more useful, since such an algorithm
that operates solely on the user–item rating matrix can be applied to any CF dataset.

Towards this direction, Valdiviezo-Diaz et al. [31] present a rating prediction Bayesian
model that produces justified recommendations. This model is based on both item-based
and user-based CF approaches, and recommends items by using similar items’ and users’
information, respectively. Neysiani et al. [32] present a method that uses genetic algorithms,
which are efficient when searching in very large spaces, in order to identify association rules
in CF. This method can work without a minimum support threshold, set by the users, as well
as a fitness function that identifies only the most interesting rules. Cui et al. [33] introduce
a CF technique based on time cuckoo search K-means and correlation coefficient. In order
to separate big data into smaller problems, this technique uses the cuckoo search K-means.
Furthermore, in order for this technique to achieve accurate and quick recommendations, it
uses a user clustering pre-processing algorithm. Wang et al. [34] present a hybrid model,
which evaluates user similarity in an objective and comprehensive manner. This model
contains an item similarity metric, which is based on the Kullback–Leibler divergence and
adjusts the adjusted Proximity–Significance–Singularity model output. Furthermore, the
model takes into account user asymmetric and user preference factors, which improve the
reliability of the model output, by distinguishing the rating preference between different
users. Jiang et al. [35] introduce a slope one algorithm that aims at the problems of untrusted
ratings as well as the low accuracy in recommender systems. This algorithm is based on
user similarity and the fusion of trusted data. In this algorithm, the trusted data are initially
selected and then the user similarity is calculated. Finally, the computed similarity is added
to the importance of the enhanced slope one algorithm and the final recommendation is
produced. Margaris et al. [36] introduce the CFVR (standing for CF Virtual Ratings), which
aims to enhance the rating prediction coverage at sparse CF datasets. In this algorithm, for
every NN not being able to contribute to the computation of the rating prediction, with a
real rating, a virtual rating (VR) is produced and used instead. As a result, the density of
the rating matrix is effectively increased, and hence the “grey sheep” problem is reduced.

Still, none of the aforementioned research works targets rating prediction quality
enhancement in low-density CF datasets by considering predictions with specific character-
istics as additional ratings.

Recently, Margaris et al. [16] and Margaris et al. [37] explore the factors associated
with the accuracy of rating predictions in sparse and dense CF datasets, respectively.

The present work contributes to the state-of-the-art research on rating prediction
accuracy in sparse CF datasets, by presenting an algorithm that enhances the rating pre-
diction quality in sparse datasets, through the introduction of a preprocessing step, which
calculates rating predictions for all cases that satisfy the conditions set in previous state-of-
the-art research work, and subsequently adds these predictions in the original dataset as
additional ratings producing an enhanced dataset. Then, any rating prediction algorithm
can be applied to the enriched dataset, including memory-based algorithms, model-based
algorithms, and algorithms exploiting additional features. The proposed algorithm is
multi-parametrically evaluated and has been found to significantly enhance the rating
prediction quality in low-density CF datasets.

3. The Proposed Algorithm

The typical process of a CF rating prediction algorithm consists of two basic steps:

(a) Compute the similarity between all pairs of users in the dataset, using a similarity
metric (such as the Cosine Similarity (CS) and the Pearson Correlation Coefficient
(PCC), which are the ones used in the majority of the CF algorithms [38,39]). Once all
user-user similarities are computed, the NNs for each user are determined.
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(b) For each user, U predict the rating values for the items they have not already rated,
based on the rating values their NNs gave to the same items. To this end, a CF rating
prediction formula is employed, where a typical formula choice is:

pU,i = rU +
∑V∈NNU

sim(U, V)∗ (rV,i − rV)

∑V∈NNU
sim(U, V)

, (1)

where U and i denote the user and the item, respectively, for whom the rating predic-
tion is computed, rU denotes the average value of U’s ratings, V iterates over the U’s
NNs, and sim(U, V) signifies the similarity value between the pair of users U and V
(calculated in the first CF step).

The proposed algorithm includes a preprocessing step, which computes predictions
for all unrated items for each user, and the rating predictions, which satisfy the “rating
prediction reliability” criteria identified in Margaris et al. [16] are added in the low-density
rating dataset as additional ratings.

More specifically, the rating prediction reliability criteria identified by Margaris et al. [16]
are as follows:

(i) The number of NNs considered for the rating prediction formulation is at least four of
the user’s NNs have rated the item and have thus contributed to the calculations of
Equation (1).

(ii) The active user’s average rating value is close to the lower or the higher end of the
rating scale. In more detail, Ref. [16] asserts that for users having average rating values
in the lower 10% of the rating scale, or in the higher 10% of the rating scale, rating
predictions are considerably more accurate compared to predictions for users having
average rating values close to the middle of the rating scale. Consequently, in this pa-
per, we adopt the condition (rU ≤ user_threshold_min ∨ rU ≥ user_threshold_max)
for utilizing a prediction to increase the density of the user–item rating matrix, where:

user_threshold_min = rating_scale_low_bound +
rating_scale_high_bound− rating_scale_low_bound

10
, (2)

and similarly

user_threshold_max = rating_scale_low_bound− rating_scale_high_bound− rating_scale_low_bound
10

, (3)

(iii) The average rating of the prediction item is close to the bounds of the rating scale.
Similarly to the case of the user’s average rating, Ref. [16] asserts that for items
having average rating values in the lower 10% of the rating scale, or in the higher
10% of the rating scale, rating predictions are considerably more accurate as com-
pared to the rating predictions for items whose average rating values are close to
the middle of the rating scale. Therefore, in this research, we adopt the condition
(iavg ≤ item_threshold_min ∨ iavg ≥ user_threshold_max) for utilizing a prediction to
increase the density of the user–item rating matrix, where:

item_threshold_min = rating_scale_low_bound +
rating_scale_high_bound− rating_scale_low_bound

10
, (4)

and similarly:

item_threshold_max = rating_scale_high_bound− rating_scale_high_bound− rating_scale_low_bound
10

(5)

As stated above, in this work, for a prediction to be added to the low-density rating
dataset as an additional rating, we require that it meets all three criteria, since this has been
experimentally found to deliver the maximum rating prediction enhancement. Algorithm 1
presents the pseudo-code of the algorithm for executing the proposed preprocessing step
of the rating prediction enhancement in detail.
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Algorithm 1: Preprocessing step of the rating prediction enhancement algorithm

Input: the original sparse CF dataset D
Output: the updated CF dataset containing both the original and the additional ratings, D_enriched

1: function ENRICH_DATASET (CF_Dataset D)
2: credible_predictions← ∅
3: for each U ∈ D.users do
4: for each i ∈ D.items do
5: NNs_ratings_on_i = {r ∈ D.ratings: r.user ∈ user_NNs[U] and r.item = i and
r.value != NULL}
6: if D.ratings[U,i] = NULL and (avg_user_ratings[U] ≤ user_threshold_min or
avg_user_ratings[U] ≥ user_threshold_max) and (avg_item_ratings[i] ≤ item_threshold_min
or avg_item_ratings[i] ≥ item_threshold_max) then
7: prediction← avg_user_ratings[U]+

∑r∈NNs_ratings_on_i user_sim[U,r.user]∗ (r.value−avg_user_ratings[r.user])
∑r∈NNs_ratings_on_i user_sim[U,r.user]

8: credible_predictions← credible_predictions ∪ (user: U, item: i, value: prediction)
9: end if
10: end for
11: end for
12: D_Enriched.users← D.users // Formulate and return result
13: D_Enriched.items←D.items
14: D_Enriched.ratings← D.ratings ∪ credible_predictions
15: return (D_Enriched)
16: end function

After the preprocessing step has concluded, the typical CF procedure (steps (a) and
(b)) is applied to the updated dataset. It has to be mentioned that although all user-to-user
similarities have been computed in the preprocessing step, they need to be computed anew
since the enriched dataset contains now more elements, which affect the similarity values.
This applies also to rating predictions.

4. Experimental Evaluation

In order to assess the efficacy of the presented algorithm, a set of experiments is
conducted, considering two rating prediction aspects, widely used in CF research, (a) the
rating prediction accuracy, measured using two prediction error metrics, the mean average
error (MAE) and the root-mean-square error (RMSE) and (b) the rating prediction coverage,
i.e., the percentage of the prediction cases where the CF system can produce a numeric
prediction. Additionally, to ascertain result reliability and generalizability, we explore the
benefits of the proposed algorithm both on memory-based recommendation algorithms
and model-based algorithms. Furthermore, in memory-based algorithms, we take into
account the two most widespread user similarity measures in CF research, i.e., the PCC
and the CS ([38,40,41]).

In our experiments, we utilize eight open-access sparse datasets, which are widely used
in CF research. More specifically, we use the Ciao dataset [42], the Epinions Dataset [43],
as well as six Amazon datasets [44–47]. As far as the six Amazon datasets are concerned,
the five-core ones are used, in order to ensure that for each prediction case, at least four
other ratings concerning the exact same item exist, so that we can produce valid results
when applying the CF algorithm. These eight datasets vary in terms of involved product
categories as well as in the number of items and users; however, all eight are considered
sparse since all densities <<1%. Table 1 summarizes the features of the datasets.
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Table 1. Dataset detailed information.

Dataset # Dataset Title Density #Users
(in K)

#Items
(in K)

#Ratings
(in K) Avg. Ratings per User

1 Amazon Movies & TV 0.019% 298 60 3400 11.4
2 Amazon CDs and Vinyl 0.017% 112 74 1440 12.9

3 Amazon Grocery and
Gourmet Food 0.075% 28 11 231 8.3

4 Amazon Videogames 0.006% 55 17 498 9.1
5 Amazon Office Products 0.03% 102 28 800 7.8
6 Amazon Digital Music 0.08% 17 12 170 10
7 CiaoDVD 0.073% 30 73 1600 53.3
8 Epinions 0.012% 40 140 665 16.6

In order to quantify the outcome of our experiments, we apply the typical “leave-one-
out cross-validation” (or “hide one technique” for short), where each time the CF system
predicts the rating value of one hidden user rating of the dataset [48–50]. In particular, we
executed two sets of experiments, where for the first one, for each user, one of the user’s
ratings, randomly, is predicted, whereas for the second one, for each user, the user’s last
rating value (using the timestamp each rating has) is predicted. These two experiments are
found to be in close convergence (their difference is less than 3%) and, for conciseness, in
the following subsections we present only the results of the first one.

As stated above, in order to assess the improvements obtained through the introduc-
tion of the proposed approach, we employ two measures, the rating prediction error reduction,
and the rating prediction coverage enhancement, which are formally defined as follows:

1. Let D be a dataset, train(D) be a subset of D used for training, and test(D) = D − train(D)
the subset of D used for testing.

2. Let E(train(D)) be the enriched training dataset, formulated by applying the prepro-
cessing step described in Section 3 on train(D).

3. Let RP be a rating prediction algorithm.
4. We apply RP(train(D)) on test(D), obtaining two sets, namely predictions(RP, train(D),

test(D)) and failures(RP, train(D), test(D)), where failures(RP, train(D), test(D)) contains
the cases for which a rating prediction could not be formulated (e.g., due to the
absence of near neighbors), whereas predictions(RP, train(D), test(D)) contains the
predictions that could actually be computed. Using the above, we can compute the
rating prediction coverage RPC of algorithm RP on dataset D, which is defined as

RPC(RP, train(D), test(D)) =
|predictions(RP, train(D), test(D))|

|test(D)| , (6)

whereas the rating prediction error can be quantified using either the MAE or the RMSE
error metric, as shown in Equations (7) and (8), respectively:

MAE(RP, train(D), test(D)) =
∑r∈predictions(RP, train(D), test(D))|r.value− r.realRating|

|predictions(RP, train(D), test(D))| (7)

RMSE(RP, train(D), test(D)) =

√√√√∑r∈predictions(RP, train(D), test(D))(r.value− r.realRating)2

|predictions(RP, train(D), test(D))| (8)

It is important to note here that model-based algorithms typically compute a predic-
tion for every case in the test dataset; when the model is not able to provide specific
latent variables for the (user, item) pair for which the prediction is formulated, the
prediction value degenerates to a dataset-dependent constant value [51]. Due to this
fact, for model-based algorithms, the rating prediction coverage is ignored, and the
evaluation is only based on the rating prediction error.
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5. Correspondingly, we apply RP(train(E(D))) on test(D), i.e., we obtain predictions using
the enhanced dataset as input to the rating prediction algorithm, obtaining two sets,
namely predictions(RP, train(E(D)), test(D)) and failures(RP, train(E(D)), test(D)), and
we compute RPC(RP, train(E(D)), test(D)), MAE(RP, train(E(D)), test(D)) and
RMSE(RP, train(E(D)), test(D)), applying the Equations (1)–(3).

6. Then, the rating prediction coverage enhancement (RPCE) for the rating prediction algo-
rithm RP on dataset D is defined as

RPCE(RP, train(D), test(D)) =
RPC(RP, train(E(D)), test(D))− RPC(RP, train(D), test(D))

RPC(RP, train(D), test(D))
(9)

whereas the rating prediction error reduction (RPER) considering the MAE and RMSE
error metrics is computed as shown in Equations (5) and (6), respectively:

RPERMAE(RP, train(D), test(D)) =
MAE(RP, train(D), test(D))−MAE(RP, train(E(D)), test(D))

MAE(RP, train(D), test(D))
(10)

RPERRMSE(RP, train(D), test(D)) =
RMSE(RP, train(D), test(D))− RMSE(RP, train(E(D)), test(D))

RMSE(RP, train(D), test(D))
(11)

4.1. Using the Preprocessing Step with Memory-Based Rating Prediction Algorithms

In this subsection we report on our findings from using the proposed approach in com-
bination with memory-based prediction algorithms, i.e., the preprocessing step is applied
to the original dataset producing an enhanced dataset, and afterward a memory-based
rating prediction algorithm is applied to the enhanced dataset, to generate additional rating
predictions. Sections 4.1.1 and 4.1.2 report on the findings considering rating prediction
accuracy and coverage, respectively.

4.1.1. Rating Prediction Accuracy Evaluation

In this paragraph, we present the outcomes of the evaluation, in terms of rating
prediction error reduction. Figure 2 depicts the rating prediction accuracy gains obtained,
as quantified by the MAE and the RMSE deviation measures, when the user–user similarity
metric applied is the PCC.
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Figure 2. Rating prediction error reduction attained by the presented algorithm, when using the PCC
user vicinity metric.
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The presented algorithm achieves an average rating prediction error reduction of 5.4%
and 7.8%, in terms of the MAE and RMSE deviation metrics, respectively, under the PCC
user–user similarity metric. MAE reductions range from 0.41% (for Amazon Movies & TV)
to 10.04% (for Amazon Digital Music). Correspondingly, the RMSE reductions range from
3.49% (for the CiaoDVD) to 11.87% (for the Amazon Office Products). In general, we can
observe that RMSE reductions are higher than the improvements in MAE, signifying that
the proposed method corrects large prediction errors.

Figure 3 depicts the respective rating prediction accuracy gains, as quantified by the
MAE and the RMSE measures, when the user-user similarity is quantified by the CS metric.
The average rating prediction error reduction considering the MAE metric under the CS
user similarity metric is 2.4%. The corresponding reduction considering the RMSE metric
is 6%. These MAE reductions range from 1% (observed for Amazon Movies & TV as well
as for Amazon CDs and Vinyl) to 4.1% (for Amazon Office Products). Correspondingly,
RMSE reductions range from 1.4% (for Amazon Movies & TV) to 9.5% (for Amazon Digital
Music). The RMSE reductions are again higher than the respective improvements in the
MAE, signifying that the proposed method corrects large prediction errors.
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Figure 3. Rating prediction error reduction attained by the presented algorithm, when using the CS
user vicinity metric.

4.1.2. Rating Prediction Coverage Evaluation

In this paragraph, the outcomes of the performance evaluation of the proposed algo-
rithm are presented, in terms of rating prediction coverage enhancement.

Figure 4 depicts the rating prediction coverage gains when user similarity is calculated
through the PCC metric.

The presented algorithm achieves an average rating prediction coverage enhancement
of 46.2% when the user similarity metric applied is the PCC, ranging from 12.8% for the
case of the Amazon Movies & TV dataset to 89.8% for the case of the Amazon Digital
Music dataset. At this point, it is worth noting that the initial coverage of Amazon Digital
Music was less than 20%; hence, the improvement margin for this dataset was considerable,
whereas the initial coverage for the Amazon Movies & TV dataset was >65%, leading to
reduced improvement margins. It is worth noting that for the Amazon datasets, smaller
initial coverage was found to be directly associated with the coverage increase achieved,
whereas the CiaoDVD and Epinions datasets deviate from the pattern, exhibiting lower
coverage improvement compared to Amazon datasets with similar initial coverage. A more
detailed analysis of this observation will be conducted in the context of our future work.
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Figure 4. Rating prediction coverage enhancement attained by the presented algorithm, when using
the PCC user vicinity metric.

Similarly, Figure 5 depicts the respective rating prediction coverage gains when the
user–user similarity metric applied is the CS. The proposed algorithm, under the CS metric,
achieves an average rating prediction coverage enhancement of 35.3%, ranging from 9.1%
for the case of the Amazon Movies & TV dataset, to 60.8% for the case of the Amazon Office
Products dataset. Analogously to the previous case (when the PCC metric is used), for the
Amazon datasets, the rating coverage increase achieved by the proposed algorithm was
found to be monotonically decreasing with the datasets’ initial coverage. In particular, the
Amazon Movies & TV dataset had the highest initial coverage (90.8%), whereas the Amazon
Office Products dataset had the smallest initial coverage (59.8%). Nevertheless, the CiaoDVD
and Epinions datasets exhibit reduced coverage improvement, compared to Amazon datasets
with similar initial coverage, an issue that will be explored in our future work.
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4.2. Using the Preprocessing Step with Model-Based Rating Prediction Algorithms

In this subsection, we report on our experiments, which aim to validate the applicabil-
ity of the proposed approach in conjunction with model-based recommendation algorithms.
In particular, we followed the process depicted in Figure 1, first applying the preprocess-
ing step presented in Section 3, and subsequently using the enriched user–item rating
matrix as input to a model-based rating prediction algorithm. To ensure the generaliz-
ability of the results, we tested two different model-based rating prediction algorithms
and more specifically (a) the item-based algorithm [52,53] and (b) the matrix factorization
algorithm [54,55].

Figure 6 illustrates the improvements obtained in rating prediction accuracy through
the application of the proposed algorithm in three Amazon product datasets [47] when
rating predictions were computed using the item-based algorithm. In Figure 6 we can
observe that the average MAE improvement is 1.8%, ranging from 1.3% for the Videogames
datasets to 2.1% for the Digital music dataset, whereas the corresponding average improve-
ment for the RMSE metric is 1.7%, ranging from 1.6% for the Videogames dataset to 1.8%
for the Digital Music and the Office products datasets.
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Figure 6. Rating prediction accuracy enhancement achieved by the proposed approach, when rating
predictions are computed using the item-based algorithm.

Figure 7 illustrates the improvements obtained in rating prediction accuracy through
the application of the proposed algorithm in the same three Amazon product datasets
shown in Figure 7 [47] when rating predictions are computed using the matrix factorization
algorithm. In Figure 8 we can observe that the average MAE improvement is 4.1%, ranging
from 3.5% for the Videogames dataset to 4.7% for the Office products dataset, whereas the
corresponding average improvement for the RMSE metric is 2.5%, ranging from 1.1% for
the Digital Music dataset to 4.7% for the Videogames dataset.

The experiments presented in this section, therefore, demonstrate that the proposed
approach can be employed in combination with model-based algorithms, with the rating
accuracy prediction benefits ranging from fair to substantial, depending on the dataset.
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Figure 7. Rating prediction accuracy enhancement achieved by the proposed approach, when rating
predictions are computed using the matrix factorization algorithm.
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Figure 8. Rating prediction accuracy enhancement achieved by the proposed approach, when rating
prediction computation is performed using the TrustSVD algorithm, which computes and exploits
implicit trust.

4.3. Using the Preprocessing Step with Implicit Trust Rating Prediction Algorithms

In this subsection, we report on our experiments aimed to validate the applicability
of the proposed approach in conjunction with recommendation algorithms that compute
and exploit implicit trust. Similarly to the practice described in the previous section, we
followed the process depicted in Figure 1, first applying the preprocessing step presented
in Section 3, and subsequently using the enriched user–item rating matrix as input to an
implicit trust-based rating prediction algorithm. The algorithm used for this validation is
TrustSVD [56], which was tuned to only exploit the implicit trust; explicit trust relationships
that could be accommodated by the algorithm were not provided.

Figure 9 illustrates the improvements obtained in rating prediction accuracy through
the application of the proposed algorithm in the same three Amazon product datasets
depicted in Figures 6 and 7 [47], in combination with the TrustSVD rating prediction
algorithm [56]. In Figure 8 we can observe that the average MAE improvement is 3.4%,
ranging from 1.7% for the Videogames dataset to 6.7% for the Office products dataset,



Big Data Cogn. Comput. 2023, 7, 59 14 of 20

whereas the corresponding average improvement for the RMSE metric is 2.6%, ranging
from 1.4% for the Digital Music dataset to 4.2% for the Office products dataset.
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Figure 9. Comparison of rating prediction MAE reduction attained by the presented algorithm and
the CFVR algorithm.

5. Discussion of the Results and Comparison with Previous Work

The results of the experimental evaluation presented above, substantiate that the algo-
rithm proposed effectively enhances rating prediction quality in low-density CF datasets,
regardless of their item domain (we have used datasets having a wide range of item do-
mains, from Movies and Music to Office Products and Food), the number of items and
the number of users contained therein, as well as the density level of the dataset. The
behavior has been also found to be exhibited under both user similarity metrics utilized
in the experiment (PCC and CS). Moreover, the proposed preprocessing step can be com-
bined with model-based algorithms with the corresponding benefits ranging from fair to
substantial, as demonstrated in Section 4.2. It is also worth noting that improvements are
demonstrated for both aspects of rating prediction quality, i.e., rating prediction accuracy
and coverage, and these improvements are observed not only on an average level, but also
in every individual dataset examined.

Furthermore, we compare the performance of this algorithm against the performance
of the CFVR algorithm proposed by Margaris et al. [36], which has been found to surpass
the performance of other CF rating prediction algorithms (e.g., [57,58]). In this compari-
son, only the Amazon Datasets Videogames, CDs and Vinyl, Movies & TV, Digital Music,
Office Products, and Grocery and Gourmet Food will be considered, since they consti-
tute the intersection of the datasets utilized for performance evaluation in [36] and the
current paper.

Considering the aspect of rating prediction accuracy, the presented algorithm achieves
an average MAE reduction of 6.6%, whereas the CFVR achieves an MAE reduction of
2.6%, i.e., the presented algorithm exceeds the performance of CFVR over 2.5 times. The
respective RMSE reductions these algorithms achieve are 9.1% and 3.4%, respectively (for
both metrics, the plain CF algorithm is considered as the performance baseline against
which error reductions are calculated). Figures 9 and 10 depict the comparison between
the two aforementioned algorithms at both average and individual dataset levels; the
proposed algorithm consistently outperforms CFVR in all cases, except for the case of the
MAE metric on the Amazon Movies & TV dataset. However, we notice that in this dataset
the presented algorithm achieves a higher reduction in the RMSE metric than CFVR, due to
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the fact that the proposed algorithm corrects a number of large prediction errors, which
are more severely penalized when using the RMSE metric. For conciseness, only figures
concerning the algorithms’ performance when using the PCC metric are listed; however,
similar observations hold for the results obtained when the CS metric is used instead.
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Figure 10. Comparison of rating prediction RMSE reduction attained by the proposed algorithm and
the CFVR algorithm.

Regarding the aspect of coverage increase, the proposed algorithm achieves a coverage
increase of 35.6% on average over the datasets considered in the comparison, whereas the
improvement attained by the CFVR algorithm is 30.1%. Figure 11 depicts the comparison
results at both average and dataset-level. We can notice that the CFVR algorithm achieves a
better coverage increase in four cases, whereas the presented algorithm achieves a higher
coverage increase for two datasets; however, two of the CFVR’s leads are by a relatively
small margin (less than 7.5%). Each of the algorithms ensures two “clear” performance
leads at dataset level.
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Considering recommender systems that exploit implicit trust relationships, Ref. [59]
reports on a state-of-the-art algorithm that improves rating prediction coverage against
the classic user–user CF algorithm by a ratio varying from 2% to 4.5%. At the same time,
the algorithm proposed by Li et al. [59] improves rating prediction accuracy by a margin
ranging from 5% to 8.3% considering the MAE, whereas the rating prediction accuracy
improvement gains considering the RMSE metric range from 4.86% to 7.59%. The proposed
approach on the other hand achieves a coverage prediction increase of 35.6% on average,
whereas the improvement in accuracy it attains is 5.43% on average regarding the MAE
metric and 7.77% regarding the RMSE metric. Overall, the approach proposed in this paper
has a clear performance edge considering rating coverage, although, on average, it has
slightly inferior performance, as compared to the implicit trust algorithm proposed in [59].
Finally, as demonstrated in Section 4.3, the proposed algorithm can be combined with
implicit trust algorithms, reaping considerable benefits.

6. Conclusions and Future Work

In this work, we presented an algorithm that can effectively enhance rating prediction
quality in low-density CF datasets. This algorithm introduces a preprocessing step that
determines which rating predictions can be deemed to be reliable, and then computes these
rating predictions and incorporates them into the user–item rating matrix, increasing thus
the dataset density. The criteria used to characterize rating predictions as “reliable” are
sourced from the state-of-the-art research work reported by Margaris et al. [16]. Afterward,
the typical CF procedure is applied to the updated dataset, with both memory-based
and model-based CF approaches being applicable at the step of the recommendation gen-
eration. The presented algorithm was multi-parametrically evaluated, using 8 widely
accepted sparse CF datasets, and was found to substantially enhance the rating predic-
tion quality in low-density CF datasets, in terms of both rating prediction coverage and
accuracy. The proposed algorithm has also been demonstrated to be applicable in com-
bination with model-based and implicit trust-aware algorithms, resulting in additional
performance improvements.

The presented algorithm successfully reduces the CF rating prediction error and it
also enhances the rating prediction coverage, in all datasets tested. This behavior was
found to be consistent under both user–user similarity metrics utilized in the evaluation
(PCC and CS). Furthermore, we also compared the presented algorithm against the CFVR
algorithm (a state-of-the-art CF algorithm, which also targets CF datasets with low density
and is based exclusively on the user–item–rating CF tuples), in terms of rating prediction
enhancement. The algorithm presented in this work has been demonstrated to perform
better than the CFVR algorithm, in terms of rating prediction accuracy, under both of the
user similarity metrics considered. Regarding the aspect of coverage increase, the proposed
algorithm achieves better overall performance, despite the fact that in some datasets the
CFVR exhibits a higher coverage increase than the proposed algorithm.

In our future work, we plan to investigate the application of the presented algorithm
in dense CF datasets. Adaptation of the proposed algorithm to consider additional infor-
mation, such as item (sub-)categories, user and item social media information, and user
emotions and characteristics, will also be investigated [60–62]. The integration of the pro-
posed algorithm with additional accuracy enhancement techniques, including algorithms
for fraudulent rating detection and removal [35] will also be considered. Finally, the perfor-
mance of the proposed algorithm when applying additional user–user similarity metrics,
such as the adjusted mutual information, the adjusted Rand index, and the Spearman
correlation [63–67], as well as the novel hybrid user similarity model presented in [34] will
be also considered.



Big Data Cogn. Comput. 2023, 7, 59 17 of 20

Author Contributions: Conceptualization, D.M., C.V., D.S. and S.O.; methodology, D.M., C.V., D.S.
and S.O.; software, D.M., C.V., D.S. and S.O.; validation, D.M., C.V., D.S. and S.O.; formal analysis,
D.M., C.V., D.S. and S.O.; investigation, D.M., C.V., D.S. and S.O.; resources, D.M., C.V., D.S. and S.O.;
data curation, D.M., C.V., D.S. and S.O.; writing—original draft preparation, D.M., C.V., D.S. and
S.O.; writing—review and editing, D.M., C.V., D.S. and S.O.; visualization, D.M., C.V., D.S. and S.O.;
supervision, D.M., C.V., D.S. and S.O.; project administration, D.M., C.V., D.S. and S.O. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data
can be found here: http://www.trustlet.org/datasets/ (accessed on 22 November 2022), https:
//guoguibing.github.io/librec/datasets.html (accessed on 22 November 2022), and https://nijianmo.
github.io/amazon/index.html (accessed on 22 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alyari, F.; Navimipour, N.J. Recommender Systems: A Systematic Review of the State of the Art Literature and Suggestions for

Future Research. Kybernetes 2018, 47, 985–1017. [CrossRef]
2. Ricci, F.; Rokach, L.; Shapira, B. Recommender Systems: Introduction and Challenges. In Recommender Systems Handbook; Ricci, F.,

Rokach, L., Shapira, B., Eds.; Springer: Boston, MA, USA, 2015; pp. 1–34, ISBN 978-1-4899-7636-9.
3. Shah, K.; Salunke, A.; Dongare, S.; Antala, K. Recommender Systems: An Overview of Different Approaches to Recommendations.

In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems
(ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–4.

4. Kluver, D.; Ekstrand, M.D.; Konstan, J.A. Rating-Based Collaborative Filtering: Algorithms and Evaluation. In Social Information
Access; Brusilovsky, P., He, D., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland,
2018; Volume 10100, pp. 344–390, ISBN 978-3-319-90091-9.

5. Jalili, M.; Ahmadian, S.; Izadi, M.; Moradi, P.; Salehi, M. Evaluating Collaborative Filtering Recommender Algorithms: A Survey.
IEEE Access 2018, 6, 74003–74024. [CrossRef]

6. Bobadilla, J.; Gutiérrez, A.; Alonso, S.; González-Prieto, Á. Neural Collaborative Filtering Classification Model to Obtain
Prediction Reliabilities. IJIMAI 2022, 7, 18. [CrossRef]

7. Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Inf.
Syst. 2004, 22, 5–53. [CrossRef]

8. Lathia, N.; Hailes, S.; Capra, L. Trust-Based Collaborative Filtering. In Trust. Management II; Karabulut, Y., Mitchell, J.,
Herrmann, P., Jensen, C.D., Eds.; IFIP—The International Federation for Information Processing; Springer: Boston, MA, USA,
2008; Volume 263, pp. 119–134, ISBN 978-0-387-09427-4.

9. Singh, P.K.; Sinha, M.; Das, S.; Choudhury, P. Enhancing Recommendation Accuracy of Item-Based Collaborative Filtering Using
Bhattacharyya Coefficient and Most Similar Item. Appl. Intell. 2020, 50, 4708–4731. [CrossRef]

10. Sánchez-Moreno, D.; López Batista, V.; Vicente, M.D.M.; Sánchez Lázaro, Á.L.; Moreno-García, M.N. Exploiting the User Social
Context to Address Neighborhood Bias in Collaborative Filtering Music Recommender Systems. Information 2020, 11, 439.
[CrossRef]

11. Margaris, D.; Spiliotopoulos, D.; Vassilakis, C. Identifying Reliable Recommenders in Users’ Collaborating Filtering and Social
Neighbourhoods. In Big Data and Social. Media Analytics; Çakırtaş, M., Ozdemir, M.K., Eds.; Lecture Notes in Social Networks;
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